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Abstract. Renormalisation group studies in d = 4 - E dimensions have thus far indicated 
that Landau-Ginzburg-Wilson (LGW) models with large numbers of fourth-order invari- 
ants do not possess a stable fixed point for small E .  This suggests that the existence of a stable 
fixed point is simply related to the number of fourth-order invariants. In this paper we show 
that no such simple relationship exists by constructing LGW models with both arbitrarily 
large numbers of invariants and a stable fixed point. 

Symmetry changes at second-order phase transitions have been a subject of consider- 
able interest. In these transitions the symmetry group, G, of the ordered phase is a 
subgroup of the symmetry group, Go, of the disordered phase. The transition is 
described by an order parameter $ which determines G;  JI is zero in the disordered 
phase and non-zero in the ordered phase. According to the theory of Landau and 
Lifshitz (Landau and Lifshitz 1968, Lifshitz 1942, see also Goshen et a1 1974) 
second-order transitions are possible only if the following three conditions are met. 

(i) The order parameter $ transforms as a basis of a single irreducible represen- 
tation, R, of Go. 

(ii) The symmetric part of the representation R3,  denoted [R3] ,  should not contain 
the unit representation. 

(iii) If the antisymmetric part of R2,  denoted {R2} ,  has a representation in common 
with the vector representation V, the wavevector q associated with R is not determined 
by symmetry. In this case one expects 4 to vary continuously in the ordered phase. 

Experimental results and model calculations largely confirm the validity of these 
rules for d 3 3 dimensional systems, where the effects of fluctuations neglected by 
Landau theory is relatively weak$. However, in d = 2 dimensions, fluctuations are 
sufficiently strong that violations of the rules are expected even theoretically. For 
example, the three- and four-state Potts models (Baxter 1973) and the melting 
transition (Nelson and Halperin 1979) violate the second rule when d = 2. 

A fourth rule, based on renormalisation group (RG) analysis has been proposed 
(Halperin et a1 1974, Mukamel et a1 1976, Bak et a1 1976). It states that the absence of 

t On leave from the Weizmann Institute of Science, Rehovot, Israel. 
t There exist very few three-dimensional systems in which at least one of the rules appears to be violated 
experimentally. In 2H-TaSe2, the transition to a CDW state appears experimentally to be second order 
(Moncton et al 1977) despite the existence of a cubic term in the Landau-Ginzburg-Wilson (LGW) 
Hamiltonian in violation of the second rule (Bak and Mukamel 1979). The transition in NbOz is associated 
with a wavevector, q = [$, f ,  $1, which experimentally does not seem to vary in the ordered phase, thereby 
violating the third rule (Pynn and Axe 1976, Mukamel 1975). It is, however, possible that the transitions in 
these systems are weakly first order, and that the q vector in the second example varies slowly with 
temperature, as the rules would predict. 
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a stable fixed point in an E expansion about the upper critical dimensionality for a given 
phase transition implies that the transition is first order (see Natterman 1976, Rudnick 
1978, Iacobson and Amit 1980). This rule provides an explanation for many experi- 
mentally observed first-order transitionst (Mukamel 1975, Mukamel and Krinsky 
1976, Mukamel et a1 1976, Mukamel and Wallace 1979, Bak et a1 1976, Halperin et a1 
1974, Allesandrini et a1 1976, Brazovskii and Dzyaloshinskii 1975, Mrozinska et ul  
1979, Shnidman and Mukamel 1980). In applying this rule one studies the LGW model 
associated with the transition within E expansion (see e.g. Wilson and Kogut 1974). The 
Hamiltonian for this model typically takes the form 

H =  ddxX 
l l i  

L- 1 

i = l  i = l  / = 0  

I 
%=$ f (v$iI2+ir f r~:+ c u/h($i) 

where . . , $,, are the n components of the order parameter and the f,(&) are 
fourth-order invariants, L in number, of the group Go. (Note that since the I+$ form a 
basis of an irreducible representation of Go, the quartic invariants, fi, satisfy the trace 
condition of Brezin et a1 (1974). The isotropy of the quadraiic terms of (1) is therefore 
preserved under renormalisation group iteration.) The E expansion can be a lengthy 
procedure if L is appreciable. However, since the irreducible representation R of the 
symmetry group Go determines the LGW Hamiltonian, it also determines the existence 
of a stable fixed point. It has therefore been suggested (Bak et a1 1976) that the fourth 
rule can be formulated directly in terms of the properties of R (or, in fact, of its 
character table). Such a formulation would place the fourth rule on the same footing as 
the first three: no RG calculation would be required. This goal has, thus far, proven 
unattainable. 

Experience with &-expansion calculations indicates that LGW models with 
sufficiently large numbers of fourth-order invariants do not possess a stable fixed point 
to leading order in E .  Indeed, to our knowledge no n-component model with L > 3 and 
a stable fixed point has ever been found for n # O$. It is therefore tempting to 
conjecture that recursion relations involving more than three (or perhaps four) fourth- 
order coupling constants simply do not admit a stable fixed point. Were this conjecture 
to hold, the application of the fourth rule would be greatly simplified. Since L is directly 
calculable from the character table of the representation R, verification of this con- 
jecture would represent an important step toward a rephrasing of the fourth rule 
directly in terms of R. 

Unfortunately the conjecture is false. In this paper we construct LGW Hamiltonians 
possessing a stable fixed point for arbitrarily large L. The general Hamiltonian has an 
n = 2' . m-component order parameter and L = p + 1 invariants, where m and p are 
positive integers and m >4. We consider the cases p = 1, p = 2 and p = 3, generalisa- 
tion to higher p being obvious. For p = 1 we introduce the n = 2m-component order 
parameter 

si = ( S i , .  . . , ST) i = 1 , 2  (2)  

t The antiferromagnetic transitions in CeSe (Ott et a1 1979) and CeTe appear experimentally to be second 
order, although the corresponding LGW model does not have a stable fixed point. Again it is possible that the 
transition is weakly first order (Mukamel and Wallace 1979). + An nmsomponent vector model appropriate to cubic systems has been found to have a stable fixed point in 
the limit n -* 0 (Aharony 1975). This model has L = 4 fourth-order invariants. 
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It is clear that, starting with this Hamiltonian, one does not generate any new quartic 
invariants under RG transformation. This model has a decoupled fixed point at which 
(see e.g. Aharony 1976, Brezin et a1 1976) 

E 
U :  = U T  = o  

4&(m + 8 )  (4)  

where K4 is a phase space constant. When the initial value of u1 is zero the fixed point 
(4)  is, of course, stable. With respect to this fixed point the crossover exponent 
associated with u1 is (Aharony 1976) 

( 5 )  

where a, and Y, are respectively the specific heat and correlation length critical 
exponents. For m > 4 one has A 1  < 0; the decoupled fixed point is therefore stable even 
for non-zero initial values of ul .  

For p = 2 we affix an extra tensor index to Si, producing an n = 4m-component order 
parameter: 

A i  = a m / V m  = ( 4 - m ) ~ / ( m  + 8 ) + 0 ( ~ ' )  

Sii =(Si., . . . , ST) i, j = 1,2 .  

The corresponding LGW model has L = 3 invariants defined as follows: 

j = l  

Again it is trivial to verify that no new quartic invariants are generated by the RG 
transformation. With u2 = 0 the model decomposes into decoupled p = 1 models, one 
involving Sil and the other Si,. The fixed point (4)  is then, as we have seen, stable for 
m >4. The crossover exponent, A2, for U Z ,  with respect to this fixed point clearly 
satisfies 

A 2 = A i .  (7) 
The fixed point (4) with U ;  = 0 is therefore stable for m > 4, even when u2 # 0 initially. 

For p = 3 we affix an extra index to Sii, producing an n = 8m-component order 
parameter: 

Sijk = ( s h k ,  9 s y k )  i, j ,  k = 1,2. (8) 
The corresponding LGW model has L = 4 invariants: 
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(9d 

Once again verification that no new quartic invariants are generated under the RG is 
trivial. Again the decoupled fixed point (4) with K T  = U? = U; = 0 is stable for m > 4. It 
is trivial to extend this construction to arbitrary p ; for each p the decoupled fixed point is 
stable and the number of invariants L = p + 1. 

The symmetry properties of the general LGW Hamiltonian, H,, with ( p  + 1) invari- 
ants, constructed in this way for any p, ensure that no new fourth-order invariants 
are generated by the RG. To see this, note that Hp is invariant under the group 
G = [O(m)]2R x S, where S is a subgroup of S p ,  the permutation group of order 2'. S is 
composed of the following elements of S20 and their products: 

(i) all elements defined by the transformation 

Sri,. . . i i - i ,  ~,ii+ i ,..., r, + sli. . , z / - i ,  l , i i + I , . .  . I p  Si],. .ti 1 .2 ,v+ l  ..... ID +szi, . i t  i ~ i i ,  I. . . t u  (10) 

where ii is either equal to ij or to ij, with ij defined as 2 if i, = 1 and 1 if i, = 2. Here 1 is an 
arbitrary integer satisfying 2 S 1 S p ;  

(ii) all elements defined by interchanging 1 and 2 in the lth positions in equation 

(iii) all elements defined by the transformation 
(10); 

SI, ,.., 1 ,  +sii, .,G 

where, again, for each j either ij = ij or ii = i,. It is simple to verify that for m > 1 the 
( p  + 1) fourth-order terms of Hp specified by our construction are the only fourth-order 
invariants under the group G. Therefore no new invariants can be generated by the RG. 

These models demonstrate the impossibility of formulating a sufficient condition for 
the nonexistence of a stable fixed point based solely on L. It is clearly of interest to find 
the symmetry criterion for the non-existence of a stable fixed point. This criterion 
evidently involves more than just the number of fourth-order invariants. 

We are grateful to Daniel Amit for stimulating our interest in this problem and for 
helpful discussions. This work was supported in part by a grant from the US-Israel 
Binational Science Foundation (BSF) Jerusalem, Israel. 
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